

Deutsche Akkreditierungsstelle

Anlage zur Teil-Akkreditierungsurkunde D-K-15110-01-01 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 20.11.2024

Ausstellungsdatum: 20.11.2024

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-K-15110-01-00.

Inhaber der Teil-Akkreditierungsurkunde:

SLG Prüf- und Zertifizierungs GmbH Burgstädter Straße 20, 09232 Hartmannsdorf

mit dem Standort

SLG Prüf- und Zertifizierungs GmbH Burgstädter Straße 20, 09232 Hartmannsdorf

Das Kalibrierlaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Kalibrierlaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese nachfolgend ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite

Seite 2 von 10

Anlage zur Teil-Akkreditierungsurkunde D-K-15110-01-01

Kalibrierungen in den Bereichen:

Elektrische Messgrößen

Gleichstrom- und Niederfrequenzmessgrößen

- Elektrische Leistung
- Gleichspannung a)
- Gleichstromstärke ^{a)}
- Gleichstromwiderstand ^{a)}
- Hochspannungsmessgrößen
- Induktivität
- Kapazität
- Wechselspannung a)
- Wechselstromstärke ^{a)}
- Wechselstromwiderstand

Zeit und Frequenz

- Frequenz und Drehzahl ^{a)}
- Zeitintervall

Hochfrequenz- und Strahlungsmessgrößen

Hochfrequenzmessgrößen

- Oszilloskopmessgrößen
- Anstiegszeit
- Bandbreite

a) auch Vor-Ort-Kalibrierung

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Me	essspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
	0.1/ - 1:-	. 220\/	Verranien		77 . A 4
Gleichspannung	0 V bis	< 220 mV		$7 \cdot 10^{-6} \cdot U + 2 \mu\text{V}$	U = Messwert
Messgeräte	0,22 V bis	< 2,2 V		$7 \cdot 10^{-6} \cdot U + 1 \mu\text{V}$	Direktmessverfahren
	2,2 V bis	< 11 V		$7 \cdot 10^{-6} \cdot U + 4 \mu\text{V}$	mit Fluke 5700A
	11 V bis	< 22 V		$7 \cdot 10^{-6} \cdot U + 7 \mu\text{V}$	
	22 V bis	< 220 V		$8 \cdot 10^{-6} \cdot U + 0.1 \text{ mV}$	
	220 V bis	1000 V		10 · 10 ⁻⁶ · <i>U</i> + 0,6 μV	
Gleichspannung	0 V bis	120 mV		$7 \cdot 10^{-6} \cdot U + 0.6 \mu\text{V}$	U = Messwert
Quellen	> 120 mV bis	1,2 V		$6 \cdot 10^{-6} \cdot U + 0,6 \mu V$	Direktmessverfahren
	> 1,2 V bis	12 V		$6 \cdot 10^{-6} \cdot U + 0,6 \mu$ V	mit HP 3458A
	> 12 V bis	120 V		$9 \cdot 10^{-6} \cdot U + 40 \mu\text{V}$	
	> 120 V bis	1050 V		$9 \cdot 10^{-6} \cdot U$ + 0,12 mV	
Hochspannungsquellen	1 kV bis	10 kV		$3 \cdot 10^{-3} \cdot U + 5 \text{ V}$	mit Fluke 5320A + Teiler
Gleichstromstärke	0 pA bis	2 pA		$14 \cdot 10^{-3} \cdot I + 15 \text{ fA}$	I = Messwert
Messgeräte und Quellen	> 2 pA bis	20 pA		$9 \cdot 10^{-3} \cdot I + 10 \text{ fA}$	Direkt- oder
	> 20 pA bis	200 pA		$9 \cdot 10^{-3} \cdot I + 10 \text{ fA}$	Substitutionsmess-
	> 200 pA bis	2 nA		$3,6 \cdot 10^{-3} \cdot I + 0,6 \text{ pA}$	verfahren mit
	> 2 nA bis	20 nA		$3,6 \cdot 10^{-3} \cdot I + 0,9 \text{ pA}$	Keysight B2985A
	> 20 nA bis	200 nA		$3,6 \cdot 10^{-3} \cdot I + 9 \text{ pA}$	
	> 200 nA bis	1 μΑ		$1.8 \cdot 10^{-3} \cdot I + 90 \text{ pA}$	
	> 1 µA bis	120 μA		30 · 10⁻⁶ · <i>I</i> + 2 nA	mit HP 3458A
	> 120 µA bis	1,2 mA		30 · 10⁻⁶ · <i>I</i> + 7 nA	
	> 1,2 mA bis	12 mA		30 · 10⁻⁶ · <i>I</i> + 70 nA	
	> 12 mA bis	120 mA		50 · 10 ⁻⁶ · <i>I</i> + 0,7 μA	
	> 120 mA bis	< 220 mA		60 · 10 ⁻⁶ · <i>I</i> + 1 μA	mit Fluke 5700A
	0,22 A bis	< 2,2 A		85 · 10 ⁻⁶ · <i>I</i> + 30 μA	
	2,2 A bis	11 A		0,30 · 10 ⁻³ · <i>I</i> + 0,40 mA	mit Fluke 5700A + 5725A
	> 11 A bis	20 A		$0.3 \cdot 10^{-3} \cdot I + 1.0 \text{ mA}$	mit HP 3458A + Shunt
Gleichstromstärke	100 μA bis	20 A		1,5 · 10 ⁻³ · <i>I</i>	mit Stromspule 1 Wdg.
Stromzangen	> 20 A bis	200 A		3,5 · 10 ⁻³ · <i>I</i>	mit Stromspule 10 Wdg.
Gleichstromwiderstand	0 Ω	20071		0,10 mΩ	R = Messwert
(Festwerte)	1 mΩ; 10 mΩ; 1	00 mO		45 · 10 ⁻⁶ · R	i wesswere
Messgeräte und Quellen	1 Ω	0011112		40 · 10 ⁻⁶ · R	
Wessgerate and Quenen	1,9 Ω			100 · 10 · R	
	10 Ω; 19 Ω)		30 · 10 ⁻⁶ · R	
	100 Ω; 190			20 · 10 ⁻⁶ · R	
	1 kΩ; 1,9 kΩ; 10 k			15 · 10 ⁻⁶ · R	
	100 kΩ; 190	•		15 · 10 · R 15 · 10 · 6 · R	
	1 MΩ; 1,9 N			20 · 10 ⁻⁶ · R	
	1 MΩ, 1,9 M 10 MΩ	1177		$40 \cdot 10^{-6} \cdot R$	
	10 MΩ 19 MΩ			50 · 10 · · <i>R</i>	
	19 MΩ 100 MΩ			$110 \cdot 10^{-6} \cdot R$	
	1 GΩ; 10 G	0		$3.7 \cdot 10^{-3} \cdot R$	
				$5.7 \cdot 10^{-3} \cdot R$ $5.3 \cdot 10^{-3} \cdot R$	
	50 GΩ; 100 · 1 TΩ	G12		$6 \cdot 10^{-3} \cdot R$	
	Ι 1Ω			D.10,.K	

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen	
Gleichstromwiderstand	50 μΩ	bis	< 200 μΩ	<i>I</i> = 20 A	0,56 · 10 ⁻³ · R + 20 nΩ	R = Messwert
(Bereiche)	200 μΩ	bis	< 2 mΩ	<i>I</i> = 10 A	$0.32 \cdot 10^{-3} \cdot R + 25 \text{ n}\Omega$	Direkt- o. Substitu-
Messgeräte und Quellen	2 mΩ	bis	< 50 mΩ	<i>I</i> = 2 A	$0,11 \cdot 10^{-3} \cdot R + 0,2 \mu\Omega$	tionsmessverfahren
	50 mΩ	bis	< 2 Ω	<i>I</i> = 200 mA	75 · 10 ⁻⁶ · <i>R</i> + 1,5 μΩ	mit HP 3458A + I-Quelle
	2 Ω	bis	12 Ω		$20 \cdot 10^{-6} \cdot R + 0.1 \text{ m}\Omega$	mit HP 3458A
	> 12 Ω	bis	120 Ω		$15 \cdot 10^{-6} \cdot R + 0.8 \text{ m}\Omega$	
	> 120 Ω	bis	1,2 kΩ		$13 \cdot 10^{-6} \cdot R + 0.8 \text{ m}\Omega$	
	> 1,2 kΩ	bis	12 kΩ		$13 \cdot 10^{-6} \cdot R + 8 \text{ m}\Omega$	
	> 12 kΩ	bis	120 kΩ		$13 \cdot 10^{-6} \cdot R + 80 \text{ m}\Omega$	
	> 120 kΩ	bis	1,2 ΜΩ		$20 \cdot 10^{-6} \cdot R + 2,5 \Omega$	
	> 1,2 MΩ	bis	12 MΩ		$65 \cdot 10^{-6} \cdot R + 0,12 \text{ k}\Omega$	
	> 12 MΩ	bis	120 MΩ		$0,65 \cdot 10^{-3} \cdot R + 1,2 \text{ k}\Omega$	
	> 120 MΩ	bis	10 GΩ		3,7 ⋅ 10 ⁻³ ⋅ <i>R</i>	mit Keysight B2985A
	> 10 GΩ	bis	100 GΩ		5,3 · 10⁻³ · <i>R</i>	
	> 100 GΩ	bis	1 ΤΩ		6 · 10⁻³ · <i>R</i>	
Gleichstromleistung	1,6 mW	bis	< 330 W	$0.1 \text{ V} \le U \le 1000 \text{ V}$	0,14 · 10 ⁻³ · <i>P</i>	P = Einstellwert
Messgeräte mit				16 mA ≤ <i>I</i> < 330 mA		Direktmessverfahren
getrennten Eingängen für	33 mW	bis	< 1,1 kW	$0.1 \text{ V} \le U \le 1000 \text{ V}$	0,26 · 10 ⁻³ · <i>P</i>	mit Fluke 552xA
Stromstärke und				0,33 A ≤ <i>I</i> < 1,1 A		
Spannung	0,11 W	bis	< 11 kW	$0.1 \text{ V} \le U \le 1000 \text{ V}$	0,52 · 10⁻³ · <i>P</i>	
				1,1 A ≤ <i>I</i> < 11 A		
	1,1 W	bis	20 kW	$0.1 \text{ V} \le U \le 1000 \text{ V}$	0,84 · 10⁻³ · <i>P</i>	
				11 A ≤ <i>I</i> ≤ 20 A		
Wechselspannung	0,22 mV	bis	< 2,2 mV	10 Hz bis < 20 Hz	$0,53 \cdot 10^{-3} \cdot U + 4 \mu V$	U = Messwert
Messgeräte				20 Hz bis < 40 Hz	$0.22 \cdot 10^{-3} \cdot U + 4 \mu V$	Direktmessverfahren
				40 Hz bis 20 kHz	$0.12 \cdot 10^{-3} \cdot U + 4 \mu V$	mit Fluke 5700A
				> 20 kHz bis 50 kHz	$0.35 \cdot 10^{-3} \cdot U + 4 \mu V$	
				> 50 kHz bis 100 kHz	$0.8 \cdot 10^{-3} \cdot U + 7 \mu\text{V}$	
				> 100 kHz bis 300 kHz	$1.1 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
				> 300 kHz bis 500 kHz	$1,6 \cdot 10^{-3} \cdot U + 25 \mu\text{V}$	
				> 500 kHz bis 1 MHz	$4 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	_
	2,2 mV	bis	< 22 mV	10 Hz bis < 20 Hz	$0.53 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
				20 Hz bis < 40 Hz	$0.22 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
				40 Hz bis 20 kHz	$0.12 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
				> 20 kHz bis 50 kHz	$0.35 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
				> 50 kHz bis 100 kHz	$0.8 \cdot 10^{-3} \cdot U + 7 \mu\text{V}$	
				> 100 kHz bis 300 kHz	$1.1 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
				> 300 kHz bis 500 kHz	$1.6 \cdot 10^{-3} \cdot U + 25 \mu\text{V}$	
	22/	1.1.	. 220\/	> 500 kHz bis 1 MHz	$4 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	_
	22 mV	bis	< 220 mV	10 Hz bis < 20 Hz	$0.53 \cdot 10^{-3} \cdot U + 15 \mu\text{V}$	
				20 Hz bis < 40 Hz	$0.22 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
				40 Hz bis 20 kHz	$0.11 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
				> 20 kHz bis 50 kHz	$0.31 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
				> 50 kHz bis 100 kHz	$0.75 \cdot 10^{-3} \cdot U + 25 \mu\text{V}$	
				> 100 kHz bis 300 kHz	$1 \cdot 10^{-3} \cdot U + 25 \mu\text{V}$	
				> 300 kHz bis 500 kHz	$1.6 \cdot 10^{-3} \cdot U + 35 \mu\text{V}$	
				> 500 kHz bis 1 MHz	$3.1 \cdot 10^{-3} \cdot U + 90 \mu\text{V}$	1

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereio	:h / M	lessspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung	0,22 V	bis	< 2,2 V	10 Hz bis < 20 Hz	0,53 · 10 ⁻³ · <i>U</i> + 85 μV	U = Messwert
Messgeräte				20 Hz bis < 40 Hz	$0.16 \cdot 10^{-3} \cdot U + 26 \mu\text{V}$	Direktmessverfahren
				40 Hz bis 20 kHz	$80 \cdot 10^{-6} \cdot U + 8 \mu\text{V}$	mit Fluke 5700A
				> 20 kHz bis 50 kHz	$0.13 \cdot 10^{-3} \cdot U + 18 \mu\text{V}$	
				> 50 kHz bis 100 kHz	$0.25 \cdot 10^{-3} \cdot U + 70 \mu\text{V}$	
				> 100 kHz bis 300 kHz	$0.45 \cdot 10^{-3} \cdot U + 0.12 \text{ mV}$	
				> 300 kHz bis 500 kHz	$1.1 \cdot 10^{-3} \cdot U + 0.34 \text{ mV}$	
	2.21/	la:a	. 22.1/	> 500 kHz bis 1 MHz	$2.1 \cdot 10^{-3} \cdot U + 0.85 \text{ mV}$	_
	2,2 V	bis	< 22 V	10 Hz bis < 20 Hz	$0.53 \cdot 10^{-3} \cdot U + 0.85 \text{ mV}$	
				20 Hz bis < 40 Hz	$0.16 \cdot 10^{-3} \cdot U + 0.26 \text{ mV}$ $80 \cdot 10^{-6} \cdot U + 80 \text{ µV}$	
				40 Hz bis 20 kHz	$0.13 \cdot 10^{-3} \cdot U + 80 \mu\text{V}$ $0.13 \cdot 10^{-3} \cdot U + 0.18 \text{mV}$	
				> 20 kHz bis 50 kHz	$0.13 \cdot 10^{-3} \cdot U + 0.18 \text{ mV}$ $0.25 \cdot 10^{-3} \cdot U + 0.33 \text{ mV}$	
				> 50 kHz bis 100 kHz		
				> 100 kHz bis 300 kHz	$0,54 \cdot 10^{-3} \cdot U + 1,5 \text{ mV}$ $1,2 \cdot 10^{-3} \cdot U + 4,5 \text{ mV}$	
				> 300 kHz bis 500 kHz		
	22 V	bis	< 220 V	> 500 kHz bis 1 MHz	$2,6 \cdot 10^{-3} \cdot U + 8 \text{ mV}$ $0,53 \cdot 10^{-3} \cdot U + 8,5 \text{ mV}$	
	22 V	DIS	< 220 V	10 Hz bis < 20 Hz	$0,33 \cdot 10^{-3} \cdot U + 8,5 \text{ mV}$ $0,16 \cdot 10^{-3} \cdot U + 2,6 \text{ mV}$	
				20 Hz bis < 40 Hz 40 Hz bis 20 kHz	$0.16 \cdot 10^{-6} \cdot U + 2.6 \text{ mV}$ 85 · $10^{-6} \cdot U + 1 \text{ mV}$	
				> 20 kHz bis 50 kHz	$0.24 \cdot 10^{-3} \cdot U + 3.3 \text{ mV}$	
					· '	
	220 V	bis	750.1/	> 50 kHz bis 100 kHz	0,54 · 10 ⁻³ · <i>U</i> + 8,5 mV 90 · 10 ⁻⁶ · <i>U</i> + 3.5 mV	mit Fluke 5700A +
	220 V	DIS	750 V	40 Hz bis 1 kHz > 1 kHz bis 20 kHz	$0.16 \cdot 10^{-3} \cdot U + 4.5 \text{ mV}$	
				> 1 kHz bis 20 kHz > 20 kHz bis 50 kHz	$0.16 \cdot 10^{3} \cdot U + 4.5 \text{ mV}$ $0.53 \cdot 10^{-3} \cdot U + 10 \text{ mV}$	5725A
				> 50 kHz bis 100 kHz	$2 \cdot 10^{-3} \cdot U + 40 \text{ mV}$	
	> 750 V	bis	1000 V	40 Hz bis 1 kHz	90 · 10 ⁻⁶ · <i>U</i> + 3.5 mV	
	> /50 V	DIS	1000 V	> 1 kHz bis 20 kHz	$0.16 \cdot 10^{-3} \cdot U + 4.5 \text{ mV}$	
					$0.16 \cdot 10^{3} \cdot U + 4.5 \text{ mV}$ $0.53 \cdot 10^{-3} \cdot U + 10 \text{ mV}$	
Wechselspannung	0,6 mV	bis	12 mV	> 20 kHz bis 30 kHz 10 Hz bis < 40 Hz	$0.39 \cdot 10^{-3} \cdot U + 4 \mu\text{V}$	U = Effektivwert
Quellen	0,61110	NIS	12 1110	40 Hz bis 1 kHz	$0.39 \cdot 10^{-3} \cdot U + 2 \mu V$	Direktmessverfahren
Quellen				> 1 kHz bis 20 kHz	$0.38 \cdot 10^{-3} \cdot U + 2 \mu\text{V}$	mit HP 3458A
				> 20 kHz bis 50 kHz	$1,3 \cdot 10^{-3} \cdot U + 2 \mu V$	im AC-SYNC-Modus
				> 50 kHz bis 100 kHz	$6 \cdot 10^{-3} \cdot U + 2 \mu\text{V}$	IIII AC-STIVC-IVIOUUS
				> 100 kHz bis 300 kHz	$50 \cdot 10^{-3} \cdot U + 4 \mu\text{V}$	
	> 12 mV	bis	120 mV	10 Hz bis < 40 Hz	$0.11 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
	7 12 1114	0.5	120 •	40 Hz bis 1 kHz	$0.11 \cdot 10^{-3} \cdot U + 2.8 \mu\text{V}$	
				> 1 kHz bis 20 kHz	$0.19 \cdot 10^{-3} \cdot U + 2.8 \mu\text{V}$	
				> 20 kHz bis 50 kHz	$0.4 \cdot 10^{-3} \cdot U + 2.8 \mu\text{V}$	
				> 50 kHz bis 100 kHz	$1 \cdot 10^{-3} \cdot U + 2.8 \mu\text{V}$	
				> 100 kHz bis 300 kHz	$4 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
	> 120 mV	bis	1,2 V	10 Hz bis < 40 Hz	$0.11 \cdot 10^{-3} \cdot U + 50 \mu\text{V}$	
	120	2.5	_,	40 Hz bis 1 kHz	$0.1 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
				> 1 kHz bis 20 kHz	$0.19 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
				> 20 kHz bis 50 kHz	$0.4 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
				> 50 kHz bis 100 kHz	$1 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
				> 100 kHz bis 300 kHz	$4 \cdot 10^{-3} \cdot U + 120 \mu\text{V}$	
	> 1,2 V	bis	12 V	10 Hz bis < 40 Hz	$0.11 \cdot 10^{-3} \cdot U + 0.5 \text{ mV}$	1
			•	40 Hz bis 1 kHz	$0.1 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
				> 1 kHz bis 20 kHz	$0.19 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
				> 20 kHz bis 50 kHz	$0.4 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
				> 50 kHz bis 100 kHz	$1 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
				> 100 kHz bis 300 kHz	$4 \cdot 10^{-3} \cdot U + 1,2 \text{ mV}$	

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereio	:h / N	lessspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselspannung Quellen	> 12 V	bis	120 V	10 Hz bis < 40 Hz 40 Hz bis 20 kHz > 20 kHz bis 50 kHz > 50 kHz bis 100 kHz	$0.26 \cdot 10^{-3} \cdot U + 5 \text{ mV}$ $0.26 \cdot 10^{-3} \cdot U + 2.8 \text{ mV}$ $0.45 \cdot 10^{-3} \cdot U + 2.8 \text{ mV}$ $1.5 \cdot 10^{-3} \cdot U + 2.8 \text{ mV}$	U = Messwert Direktmessverfahren mit HP 3458A im AC-SYNC-Modus
	> 120 V	bis	1000 V	40 Hz bis 1 kHz > 1 kHz bis 20 kHz > 20 kHz bis 50 kHz	$0.52 \cdot 10^{-3} \cdot U + 26 \text{ mV}$ $0.8 \cdot 10^{-3} \cdot U + 26 \text{ mV}$ $1.6 \cdot 10^{-3} \cdot U + 26 \text{ mV}$	
Hochspannungsquellen	1 kV	bis	7 kV	50 Hz bis 60 Hz	5 · 10 ⁻³ · <i>U</i> + 5 V	mit Fluke 5320A + Teiler
Wechselstromstärke Messgeräte	9 μΑ	bis	< 220 μA	10 Hz bis < 20 Hz 20 Hz bis < 40 Hz 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	0,78 · 10 ⁻³ · <i>I</i> + 50 nA 0,42 · 10 ⁻³ · <i>I</i> + 50 nA 0,16 · 10 ⁻³ · <i>I</i> + 50 nA 0,65 · 10 ⁻³ · <i>I</i> + 60 nA 1,6 · 10 ⁻³ · <i>I</i> + 0,1 μA	I = Messwert
	0,22 mA	bis	< 2,2 mA	10 Hz bis < 20 Hz 20 Hz bis < 40 Hz 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	0,78 · 10 ⁻³ · <i>I</i> + 50 nA 0,42 · 10 ⁻³ · <i>I</i> + 50 nA 0,16 · 10 ⁻³ · <i>I</i> + 60 nA 0,65 · 10 ⁻³ · <i>I</i> + 0,45 μA 1,6 · 10 ⁻³ · <i>I</i> + 0,9 μA	
	2,2 mA	bis	< 22 mA	10 Hz bis < 20 Hz 20 Hz bis < 40 Hz 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	0,78 · 10 ⁻³ · <i>I</i> + 0,5 μA 0,42 · 10 ⁻³ · <i>I</i> + 0,5 μA 0,16 · 10 ⁻³ · <i>I</i> + 0,6 μA 0,65 · 10 ⁻³ · <i>I</i> + 4,5 μA 1,6 · 10 ⁻³ · <i>I</i> + 9 μA	
	22 mA	bis	< 220 mA	10 Hz bis < 20 Hz 20 Hz bis < 40 Hz 40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	0,78 · 10 ⁻³ · I + 5 μA 0,42 · 10 ⁻³ · I + 5 μA 0,16 · 10 ⁻³ · I + 6 μA 0,65 · 10 ⁻³ · I + 45 μA 1,6 · 10 ⁻³ · I + 90 μA	
	0,22 A	bis	< 2,2 A	10 Hz bis < 45 Hz 45 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	$0.7 \cdot 10^{-3} \cdot I + 40 \mu\text{A}$ $0.7 \cdot 10^{-3} \cdot I + 40 \mu\text{A}$ $0.26 \cdot 10^{-3} \cdot I + 30 \mu\text{A}$ $0.8 \cdot 10^{-3} \cdot I + 90 \mu\text{A}$ $9 \cdot 10^{-3} \cdot I + 0.17 \text{mA}$	
	2,2 A	bis	11 A	40 Hz bis 1 kHz > 1 kHz bis 5 kHz > 5 kHz bis 10 kHz	$0.46 \cdot 10^{-3} \cdot I + 0.17 \text{ mA}$ $0.9 \cdot 10^{-3} \cdot I + 0.3 \text{ mA}$ $3.4 \cdot 10^{-3} \cdot I + 0.6 \text{ mA}$	mit Fluke 5700A + 5725A
	> 11 A	bis	20 A	40 Hz bis 100 Hz > 100 Hz bis 1 kHz > 1 kHz bis 5 kHz	$0,62 \cdot 10^{-3} \cdot I + 1,4 \text{ mA}$ $0,63 \cdot 10^{-3} \cdot I + 1,6 \text{ mA}$ $11 \cdot 10^{-3} \cdot I + 1,7 \text{ mA}$	
Wechselstromstärke	1 mA	bis	20 A	40 Hz bis 440 Hz	2,5 · 10 ⁻³ · <i>I</i>	mit Stromspule 1 Wdg.
Stromzangen	> 20 A	bis	200 A	40 Hz bis 100 Hz > 100 Hz bis 440 Hz	5 · 10 ⁻³ · <i>I</i> 12 · 10 ⁻³ · <i>I</i>	mit Stromspule 10 Wdg.
Wechselstromstärke Quellen	6 μΑ	bis	120 μΑ	10 Hz bis < 20 Hz 20 Hz bis < 45Hz 45 Hz bis < 1 kHz	5 · 10 ⁻³ · <i>I</i> + 50 nA 1,9 · 10 ⁻³ · <i>I</i> + 50 nA 0,78 · 10 ⁻³ · <i>I</i> + 50 nA	I = Messwert Direktmessverfahren mit HP 3458A
	> 0,12 mA	bis	1,2 mA	10 Hz bis < 20 Hz 20 Hz bis < 45Hz 45 Hz bis < 100 Hz 100 Hz bis 5 kHz > 5 kHz bis 10 kHz	$5 \cdot 10^{-3} \cdot I + 0.28 \mu A$ $1.9 \cdot 10^{-3} \cdot I + 0.28 \mu A$ $0.78 \cdot 10^{-3} \cdot I + 0.28 \mu A$ $0.38 \cdot 10^{-3} \cdot I + 0.28 \mu A$ $1.9 \cdot 10^{-3} \cdot I + 1 \mu A$	

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

	i i		1	L.	ı	l
Messgröße /	Messbereic	:h / N	1essspanne	Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand				Verfahren	Messunsicherheit	
Wechselstromstärke	> 1,2 mA	bis	12 mA	10 Hz bis < 20 Hz	$5 \cdot 10^{-3} \cdot I + 2,8 \mu\text{A}$	I = Messwert
Quellen				20 Hz bis < 45Hz	$1.9 \cdot 10^{-3} \cdot I + 2.8 \mu\text{A}$	Direktmessverfahren
				45 Hz bis < 100 Hz	$0.78 \cdot 10^{-3} \cdot I + 2.8 \mu\text{A}$	mit HP 3458A
				100 Hz bis 5 kHz	$0.38 \cdot 10^{-3} \cdot I + 2.8 \mu\text{A}$	
	> 12 mA	bis	120 mA	10 Hz bis < 20 Hz	5 · 10 ⁻³ · <i>I</i> + 28 μA	
				20 Hz bis < 45Hz	1,9 · 10 ⁻³ · <i>I</i> + 28 μA	
				45 Hz bis < 100 Hz	0,78 · 10 ⁻³ · <i>I</i> + 28 μA	
				100 Hz bis 5 kHz	0,38 · 10 ⁻³ · <i>I</i> + 28 μA	
	> 0,12 A	bis	1,05 A	20 Hz bis < 45Hz	2 · 10 ⁻³ · <i>I</i> + 0,28 mA	
				45 Hz bis 100 Hz	1 · 10 ⁻³ · <i>I</i> + 0,28 mA	
				> 100 Hz bis 5 kHz	1,3 · 10 ⁻³ · <i>I</i> + 0,28 mA	
	> 1,05 A	bis	20 A	40 Hz bis 1 kHz	0,65 · 10 ⁻³ · <i>I</i> + 0,1 mA	mit HP 3458A + Shunt
Wechselstromwiderstand	100 mΩ	bis	100 kΩ	100 Hz bis 10 kHz	$0,65 \cdot 10^{-3} \cdot R + 1 \text{ m}\Omega$	R = Messwert
(Betrag der Impedanz)	1Ω	bis	20 kΩ	> 10 kHz bis 100 kHz	$0,65 \cdot 10^{-3} \cdot R + 7 \text{ m}\Omega$	Direkt- o. Substitu-
Messgeräte und Quellen	> 20 kΩ	bis	100 kΩ	> 10 kHz bis 100 kHz	1,2 · 10⁻³ · <i>R</i>	tionsverfahren mit Wayne Kerr 6440B
Wechselstrom-Wirkleistung	0,165 mW	bis	< 3 kW	45 Hz ≤ <i>f</i> < 65 Hz	Vana 12 2 2	S = Scheinleistung
Messgeräte mit	0,103 11100	DIS	\ 3 KVV	$-60^{\circ} \le \varphi \le 60^{\circ}$	$\sqrt{(0.83 \cdot \cos \varphi)^2 + U_{\varphi}^2} \cdot 10^{-3} \cdot S$	Direktmessverfahren
getrennten Eingängen für				$0.1 \text{ V} \le U \le 1000 \text{ V}$		mit Fluke 552xA
Stromstärke und				3,3 mA ≤ <i>I</i> < 3 A		mic race 332AA
Spannung	0,15 W	bis	< 11 kW	45 Hz ≤ f < 65 Hz		φ<0° kapazitiv
Spannang	0,13 **	DIS	< 11 KVV	$-60^{\circ} \le \varphi \le 60^{\circ}$	$\sqrt{(1,1\cdot\cos\varphi)^2+U_{\varphi}^2}\cdot10^{-3}\cdot S$	$\varphi > 0^{\circ}$ induktiv
				0,1 V ≤ <i>U</i> ≤ 1000 V		φromadativ
				3 A ≤ <i>I</i> < 11 A		II. A.O. et e e
	0,55 W	bis	20 kW	45 Hz ≤ f < 65 Hz	[12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	U_{φ} = 1,8 · sin φ
	0,55 **	DIS	20 KW	$-60^{\circ} \le \varphi \le 60^{\circ}$	$\sqrt{(1,4\cdot\cos\varphi)^2+U_{\varphi}^2}\cdot10^{-3}\cdot S$	Unsicherheitsbeitrag
				$0.1 \text{ V} \le U \le 1000 \text{ V}$		des Phasenwinkels
				11 A ≤ <i>I</i> ≤ 20 A		
Kapazität	10 pF	bis	< 100 pF	1 kHz bis 100 kHz	0,65 · 10 ⁻³ · <i>C</i> + 25 fF	C = Messwert
Messgeräte und Quellen	100 pF	bis	< 10 nF	1 kHz bis 100 kHz	0,65 · 10 ⁻³ · C	Direkt- o. Substitu-
Wessgerate and Quenen	10 pr	bis	1 μF	100 Hz bis 10 kHz	0,65 · 10 ⁻³ · C	tionsverfahren mit
					,	Wayne Kerr 6440B
Kapazität	0,19 nF	bis	< 0,4 nF	10 Hz bis 10 kHz	4 · 10 ⁻³ · <i>C</i> + 8 pF	C = Messwert
Messgeräte	0,4 nF	bis	< 1,1 nF	10 Hz bis 10 kHz	$4 \cdot 10^{-3} \cdot C + 8 \text{ pF}$	Direktmessverfahren
	1,1 nF	bis	< 3,3 nF	10 Hz bis 3 kHz	$4 \cdot 10^{-3} \cdot C + 8 \text{ pF}$	mit Fluke 552xA
	3,3 nF	bis	< 11 nF	10 Hz bis 1 kHz	$2.2 \cdot 10^{-3} \cdot C + 8 \text{ pF}$	
	11 nF	bis	< 110 nF	10 Hz bis 1 kHz	$2.2 \cdot 10^{-3} \cdot C + 80 \text{ pF}$	
	110 nF	bis	< 330 nF	10 Hz bis 1 kHz	$2,2 \cdot 10^{-3} \cdot C + 0,25 \text{ nF}$	
	0,33 μF	bis	< 1,1 μF	10 Hz bis 600 Hz	$2.2 \cdot 10^{-3} \cdot C + 0.8 \text{ nF}$	
	1,1 μF	bis	< 3,3 μF	10 Hz bis 300 Hz	$2,2 \cdot 10^{-3} \cdot C + 2,5 \text{ nF}$	
	3,3 μF	bis	< 11 μF	10 Hz bis 150 Hz	$2.2 \cdot 10^{-3} \cdot C + 8 \text{ nF}$	
	11 μF	bis	< 33 μF	10 Hz bis 120 Hz	$3.6 \cdot 10^{-3} \cdot C + 25 \text{ nF}$	
	33 μF	bis	< 110 μF	10 Hz bis 80 Hz	$3.6 \cdot 10^{-3} \cdot C + 80 \text{ nF}$	
	110 μF	bis	< 330 μF	0 Hz bis 50 Hz	$3.6 \cdot 10^{-3} \cdot C + 0.25 \mu\text{F}$	
	0,33 mF	bis	< 1,1 mF	0 Hz bis 20 Hz	$3.6 \cdot 10^{-3} \cdot C + 0.8 \mu\text{F}$	
	1,1 mF	bis	< 3,3 mF	0 Hz bis 6 Hz	$3.6 \cdot 10^{-3} \cdot C + 2.5 \mu\text{F}$	
	3,3 mF	bis	< 11 mF	0 Hz bis 2 Hz	$3.6 \cdot 10^{-3} \cdot C + 8 \mu\text{F}$	
	11 mF	bis	< 33 mF	0 Hz bis 0,6 Hz	$6 \cdot 10^{-3} \cdot C + 25 \mu\text{F}$	
	33 mF	bis	< 110 mF	0 Hz bis 0,2 Hz	9 · 10 ⁻³ · <i>C</i> + 80 μF	

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereio	:h / M	essspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Induktivität Messgeräte und Quellen	1	100 μH 1 mH 10 mH .00 mH .00 mH 1 H 10 H		1 kHz; 10 kHz 1 kHz; 10 kHz 1 kHz; 10 kHz 1 kHz 10 kHz 100 Hz; 1 kHz 100 Hz; 1 kHz	$0.5 \cdot 10^{-3} \cdot L$ $0.3 \cdot 10^{-3} \cdot L$ $0.3 \cdot 10^{-3} \cdot L$ $0.3 \cdot 10^{-3} \cdot L$ $0.45 \cdot 10^{-3} \cdot L$ $0.3 \cdot 10^{-3} \cdot L$ $0.4 \cdot 10^{-3} \cdot L$	L= Messwert Direktmessverfahren
Frequenz Messgeräte und Quellen	10 MHz 0,1 Hz	bis	3 GHz		1,5 · 10 ⁻¹⁰ · f + U_{Tf} 1 · 10 ⁻⁹ · f + U_{Tf}	f = Messwert U_{Tf} = Triggerunsicherheit
Zeitintervall Auslösezeit (RCD)	0,01 s	bis	5 s	50 Hz bis 60 Hz 3 mA bis 3A	$0.2 \cdot 10^{-3} \cdot t + 0.25 \text{ ms}$	t = Messwert
Oszilloskope vertikal	5 mV 5 mV	bis bis	5 V 100 V	50 Ω; DC bis 10 kHz 1 MΩ; DC bis 10 kHz	2,5 · 10 ⁻³ · U_{ss} + 40 μ V 2,5 · 10 ⁻³ · U_{ss} + 40 μ V	Uss = Einstellwert Direktmessverfahren mit Fluke 552xA
Oszilloskope horizontal	2 ns 50 ms	bis bis	20 ms 5 s		2,5 · 10 ⁻⁶ · t + 2 ps 25 · 10 ⁻⁶ · t + 1 · 10 ⁻³ · t ² /s	t = Einstellwert Direktmessverfahren mit Fluke 552xA
Bandbreite (Frequenzgang)	100 kHz	bis	1,1 GHz	50 Ω; 30 mV bis 3 V	40 · 10 ⁻³ · G _{ind} (0,35 dB)	G _{ind} = Gemessener Frequenzgang Direktmessverfahren mit Fluke 552xA
Anstiegszeit	300 ps > 1 ns	bis	1 ns	50 Ω; 25 mV bis 1 V 50 Ω; 25 mV bis 1 V	50 ps $25 \cdot 10^{-3} \cdot t_{\rm r} + 25 \text{ ps}$	t _r = Messwert Direktmessverfahren mit Fluke 552xA
Absolutdruck p _{abs}	0,75 bar 1,4 bar > 101 bar	bis bis bis	1,15 bar 101 bar 161 bar	DKD-R 6-1:2014 Kalibriermethode: $p_{abs} = p_e + p_{amb}$	0,15 mbar 1,5 \cdot 10 ⁻⁴ \cdot $p_{\rm e}$ + 0,6 mbar 35 mbar	Druckmedium: Gas Die Messunsicherheit des Barometers ist zu berücksichtigen
	1 bar 4 bar > 61 bar	bis bis	61 bar 1201 bar		1,6 · 10 ⁻⁴ · $p_{\rm e}$ + 0,55 mbar 1,6 · 10 ⁻⁴ · $p_{\rm e}$ + 0,55 mbar 1,6 · 10 ⁻⁴ · $p_{\rm e}$ + 5,5 mbar	Druckmedium: Öl Die Messunsicherheit des Barometers ist zu berücksichtigen
Überdruck $p_{\rm e}$	0 bar 0,4 bar > 100 bar	bis bis bis	0,35 bar 100 bar 160 bar	DKD-R 6-1:2014	0,06 mbar 1,5 · 10 ⁻⁴ · $p_{\rm e}$ + 0,6 mbar 35 mbar	Druckmedium: Gas
	0 bar 3 bar > 60 bar	bis bis	60 bar 1200 bar		$\begin{array}{c} 1,6\cdot 10^{\text{-4}}\cdot p_{\text{e}} + 0,55 \text{ mbar} \\ 1,6\cdot 10^{\text{-4}}\cdot p_{\text{e}} + 0,55 \text{ mbar} \\ 1,6\cdot 10^{\text{-4}}\cdot p_{\text{e}} + 5,5 \text{ mbar} \end{array}$	Druckmedium: Öl

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Messbereic			Messbedingungen /	Erweiterte	Bemerkungen
Kalibriergegenstand				Verfahren	Messunsicherheit	
Gleichspannung	0 V	bis	120 mV		$7 \cdot 10^{-6} \cdot U + 0,6 \mu$ V	U = Messwert
Quellen	> 120 mV	bis	1,2 V		6 · 10 ⁻⁶ · <i>U</i> + 0,6 μV	Direktmessverfahren
	> 1,2 V	bis	12 V		6 · 10 ⁻⁶ · <i>U</i> + 0,6 μV	mit HP 3458A
	> 12 V	bis	120 V		$9 \cdot 10^{-6} \cdot U + 40 \mu\text{V}$	
	> 120 V	bis	1050 V		9 · 10 ⁻⁶ · <i>U</i> + 0,12 mV	
Gleichstromstärke	0 μΑ	bis	120 μΑ		30 · 10⁻⁶ · <i>I</i> + 2 nA	I = Messwert
Quellen	> 120 µA	bis	1,2 mA		$30 \cdot 10^{-6} \cdot I + 7 \text{ nA}$	Direktmessverfahren
	> 1,2 mA	bis	12 mA		30 · 10 ⁻⁶ · <i>I</i> + 70 nA	mit HP 3458A
	> 12 mA	bis	120 mA		$50 \cdot 10^{-6} \cdot I + 0.7 \mu\text{A}$	
	> 120 mA	bis	1,05 A		$0,15 \cdot 10^{-3} \cdot I + 12 \mu\text{A}$	
	> 1,05 A	bis	20 A		$0.3 \cdot 10^{-3} \cdot I + 0.1 \text{ mA}$	mit HP 3458A + Shunt
Gleichstromwiderstand	0 Ω	bis	12 Ω		$20 \cdot 10^{-6} \cdot R + 0.1 \text{ m}\Omega$	R = Messwert
Quellen	> 12 Ω	bis	120 Ω		$15 \cdot 10^{-6} \cdot R + 0.8 \text{ m}\Omega$	Direktmessverfahren
	> 120 Ω	bis	1,2 kΩ		$13 \cdot 10^{-6} \cdot R + 0.8 \text{ m}\Omega$	mit HP 3458A
	> 1,2 kΩ	bis	12 kΩ		$13 \cdot 10^{-6} \cdot R + 8 \text{ m}\Omega$	
	> 12 kΩ	bis	120 kΩ		$13 \cdot 10^{-6} \cdot R + 80 \text{ m}\Omega$	
	> 120 kΩ	bis	1,2 ΜΩ		$20 \cdot 10^{-6} \cdot R + 2,5 \Omega$	
	> 1,2 MΩ	bis	12 MΩ		$65 \cdot 10^{-6} \cdot R + 0,12 \text{ k}\Omega$	
	> 12 MΩ	bis	120 ΜΩ		$0.65 \cdot 10^{-3} \cdot R + 1.2 \text{ k}\Omega$	
	> 120 MΩ	bis	1,2 GΩ		$6.5 \cdot 10^{-3} \cdot R + 12 \text{ k}\Omega$	**
Wechselspannung	0,6 mV	bis	12 mV	10 Hz bis < 40 Hz	$0.39 \cdot 10^{-3} \cdot U + 4 \mu\text{V}$	U = Messwert
Quellen				40 Hz bis 1 kHz	$0.25 \cdot 10^{-3} \cdot U + 2 \mu\text{V}$	Direktmessverfahren
				> 1 kHz bis 20 kHz	$0.38 \cdot 10^{-3} \cdot U + 2 \mu\text{V}$	mit HP 3458A
				> 20 kHz bis 50 kHz	$1.3 \cdot 10^{-3} \cdot U + 2 \mu\text{V}$	im AC-SYNC-Modus
				> 50 kHz bis 100 kHz	$6 \cdot 10^{-3} \cdot U + 2 \mu\text{V}$	
	12 1/		120 1/	> 100 kHz bis 300 kHz	$50 \cdot 10^{-3} \cdot U + 3 \mu\text{V}$	_
	> 12 mV	bis	120 mV	10 Hz bis < 40 Hz	$0.11 \cdot 10^{-3} \cdot U + 5 \mu\text{V}$	
				40 Hz bis 1 kHz	$0.1 \cdot 10^{-3} \cdot U + 2.8 \mu\text{V}$	
				> 1 kHz bis 20 kHz	$0,19 \cdot 10^{-3} \cdot U + 2,8 \mu\text{V}$	
				> 20 kHz bis 50 kHz	$0.4 \cdot 10^{-3} \cdot U + 2.8 \mu\text{V}$	
				> 50 kHz bis 100 kHz	$1 \cdot 10^{-3} \cdot U + 2.8 \mu\text{V}$	
				> 100 kHz bis 300 kHz	$4 \cdot 10^{-3} \cdot U + 12 \mu\text{V}$	
	> 120 mV	bis	1,2 V	10 Hz bis < 40 Hz	$0.11 \cdot 10^{-3} \cdot U + 50 \mu\text{V}$	
				40 Hz bis 1 kHz	$0.1 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
				> 1 kHz bis 20 kHz	$0.19 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
				> 20 kHz bis 50 kHz	$0.4 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
				> 50 kHz bis 100 kHz	$1 \cdot 10^{-3} \cdot U + 28 \mu\text{V}$	
	4.21/		401/	> 100 kHz bis 300 kHz	$4 \cdot 10^{-3} \cdot U + 120 \mu\text{V}$	4
	> 1,2 V	bis	12 V	10 Hz bis < 40 Hz	$0.11 \cdot 10^{-3} \cdot U + 0.5 \text{ mV}$	
				40 Hz bis 1 kHz	$0.1 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
				> 1 kHz bis 20 kHz	$0.19 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
				> 20 kHz bis 50 kHz	$0.4 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
				> 50 kHz bis 100 kHz	$1 \cdot 10^{-3} \cdot U + 0.28 \text{ mV}$	
	> 12 V	his	120 V	> 100 kHz bis 300 kHz	$4 \cdot 10^{-3} \cdot U + 1,2 \text{ mV}$ $0.26 \cdot 10^{-3} \cdot U + 5 \text{ mV}$	-
	> 12 V	มเร	120 V	10 Hz bis < 40 Hz 40 Hz bis 20 kHz	.,	
				> 20 kHz bis 50 kHz	$0,26 \cdot 10^{-3} \cdot U + 2,8 \text{ mV}$ $0,45 \cdot 10^{-3} \cdot U + 2,8 \text{ mV}$	
				> 50 kHz bis 50 kHz > 50 kHz bis 100 kHz	$0,45 \cdot 10^{-3} \cdot U + 2,8 \text{ mV}$ $1,5 \cdot 10^{-3} \cdot U + 2,8 \text{ mV}$	
	> 120 V	bis	1000 V	40 Hz bis 1 kHz	$0.52 \cdot 10^{-3} \cdot U + 2.8 \text{ mV}$	-
	/ 120 V	DIS	1000 V	> 1 kHz bis 20 kHz	$0.8 \cdot 10^{-3} \cdot U + 26 \text{ mV}$	
				> 20 kHz bis 50 kHz	$1,6 \cdot 10^{-3} \cdot U + 26 \text{ mV}$	
	1			- 20 KI IZ DIS JU KI IZ	1,0 10 0 T ZUIIIV	1

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereio	:h / Me	essspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit	Bemerkungen
Wechselstromstärke	6 μΑ	bis	120 μΑ	10 Hz bis < 20 Hz	5 · 10 ⁻³ · <i>I</i> + 50 nA	I = Messwert
Quellen				20 Hz bis < 45Hz	$1.9 \cdot 10^{-3} \cdot I + 50 \text{ nA}$	Direktmessverfahren
				45 Hz bis < 1 kHz	$0.78 \cdot 10^{-3} \cdot I + 50 \text{ nA}$	mit HP 3458A
	> 0,12 mA	bis	1,2 mA	10 Hz bis < 20 Hz	5 · 10 ⁻³ · <i>I</i> + 0,28 μA	
				20 Hz bis < 45Hz	1,9 · 10 ⁻³ · <i>I</i> + 0,28 μA	
				45 Hz bis < 100 Hz	0,78 · 10 ⁻³ · <i>I</i> + 0,28 μA	
				100 Hz bis 5 kHz	$0.38 \cdot 10^{-3} \cdot I + 0.28 \mu\text{A}$	
				> 5 kHz bis 10 kHz	$1.9 \cdot 10^{-3} \cdot I + 1 \mu A$	
	> 1,2 mA	bis	12 mA	10 Hz bis < 20 Hz	5 · 10 ⁻³ · <i>I</i> + 2,8 μA	
				20 Hz bis < 45Hz	1,9 · 10 ⁻³ · <i>I</i> + 2,8 μA	
				45 Hz bis < 100 Hz	0,78 · 10 ⁻³ · <i>I</i> + 2,8 μA	
				100 Hz bis 5 kHz	0,38 · 10 ⁻³ · <i>I</i> + 2,8 μA	
	> 12 mA	bis	120 mA	10 Hz bis < 20 Hz	5 · 10 ⁻³ · <i>I</i> + 28 μA	
				20 Hz bis < 45Hz	$1.9 \cdot 10^{-3} \cdot I + 28 \mu\text{A}$	
				45 Hz bis < 100 Hz	0,78 · 10 ⁻³ · <i>I</i> + 28 μA	
				100 Hz bis 5 kHz	0,38 · 10 ⁻³ · <i>I</i> + 28 μA	
	> 0,12 A	bis	1,05 A	20 Hz bis < 45Hz	2 · 10 ⁻³ · <i>I</i> + 0,28 mA	
				45 Hz bis 100 Hz	$1 \cdot 10^{-3} \cdot I + 0,28 \text{ mA}$	
				> 100 Hz bis 5 kHz	$1.3 \cdot 10^{-3} \cdot I + 0.28 \text{ mA}$	
	> 1,05 A	bis	20 A	40 Hz bis 1 kHz	0,65 · 10 ⁻³ · <i>I</i> + 0,1 mA	mit HP 3458A + Shunt
Frequenz	1 Hz	bis	10 MHz		$10 \cdot 10^{-6} \cdot f + U_{Tf}$	f = Messwert
Quellen					•	U_{Tf} = Trigger-
						unsicherheit
						Direktmessverfahren
						mit HP 3458A

Verwendete Abkürzungen:

CMC Calibration and measurement capabilities (Kalibrier- und Messmöglichkeiten)

DIN Deutsches Institut für Normung e.V.

EN Europäische Norm

IEC International Electrotechnical Commission – Internationale Elektrotechnische Kommission ISO International Organization for Standardization – Internationale Organisation für Normung